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1 INTRODUCTION 
 

The use and applications of fibre reinforced polymers (FRP) to reinforce and retrofit existing 
structures has increased exponentially in last decades. Nowadays, these composite materials can be 
found as tensile reinforcements, shear reinforcements, column wrapping, etc. Although FRP 
reinforcements are not recommended to be used to resist compressive forces (Rabinovich [1]), there 
are many situations in which this load state can be found. This aspect is of special relevance in the 
case of structures subjected to seismic loads, where the sign of the load is reversed as the earthquake 
evolves, in case of fatigue loads or when a strengthened element is unloaded. Thus, a procedure to 
obtain the compression strength of FRP composites is required in order to take into account this sort 
of situations.  

The main failure cause of compressed FRP is the fibre buckling phenomenon. Fibres are very 
slender elements and their second order effects are avoided by the matrix elastic restrain. However, 
as damage in matrix evolves, fibre restrain becomes weaker and fibre buckling occurs.  

First studies about fibre buckling correspond to Rosen [2], who defined two different buckling 
modes: extensional and shear buckling. He also defined the compression stress at which this buckling 
occurs. This stress value is defined by the matrix shear strength and by the amount of fibres found in 
the composite. From this initial approximation, different authors have developed new models in order 
to obtain a better prediction of composite compression strength due to fibre buckling. Among different 
existing studies, it is worth to mention the works by Barbero and Tomblin [3], Balacó de Morais and 
Torres Marques [4] and Drapier et al. [5]. All these authors consider composites as a single orthotropic 
material. Using energetic equilibrium, they develop micro-mechanical models from which the final 
compression stress in the composite is obtained. The expressions found in all different models agree 
in the dependence of the critical compression stress on three main parameters: (a) Matrix shear 
strength, (b) Fibre initial misalignment and (c) Proportion between fibre and matrix in the composite. 
Hence, the limit compression stress of these new formulations depends on the same parameters 
pointed out by Rosen and on a new one: fibre initial misalignments. According to Jochum and 
Grandidier [6], fibre misalignments are produced in the composite manufacturing process, during the 
matrix curing. These misalignments are regular along the whole fibre and can be represented by a 
sinusoidal shape.  

The fibre buckling formulation proposed in this paper appears in the context of FRP reinforcement 
and retrofitting simulations using numerical techniques. These simulations are made using a finite 
element code which deals with composite materials using the serial/parallel rule of mixtures developed 
by Rastellini [7]. This theory allows obtaining the composite behaviour from the response of its 
constituents, each one computed with its own constitutive law. The developed simulations have 
proved the accuracy of the proposed numerical method, which is able to obtain the different effects 
produced by different FRP reinforcements in the same structure, the behaviour of the structure if it is 
reinforced or if it is retrofitted, etc. The code has been validated using experimental values. Some of 
the simulations realized are exposed in Martinez et al. [8].  

This paper includes a brief description of the serial/parallel (S/P) rule of mixtures as well as its use 
in the simulation of FRP reinforcements of existing structures. Afterwards, the new formulation 
proposed to obtain the compression strength of composite materials is exposed. Finally, the new 
formulation is validated.  
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2 NUMERICAL SIMULATION OF FRP REINFORCEMENTS USING THE 
SERIAL/PARALLEL RULE OF MIXTURES 
 
2.1 Serial/Parallel Rule of Mixtures 

The serial parallel rule of mixtures is implemented in PLCd code. This is a finite element code 
developed at the Polytechnic University of Catalonia (UPC). The code works with two and three 
dimensional finite elements, has many constitutive laws to predict the material behaviour (Von-Mises, 
Mohr-Coulomb and Drucker-Prager among others) and different integration algorithms to simulate the 
material evolution (damage, plastic damage, visco-elasticity, etc). It can also perform dynamic 
simulations using the Newmark method.  

The classical mixing theory was first developed by Trusdell and Toupin [9]. It supposes that all 
constituent materials included in a structural point have the same strain values. This is a major 
limitation because only composite materials whose constituents present a parallel behaviour can be 
considered. The S/P rule of mixtures corrects this situation, being able to deal with composites with 
serial and serial//parallel behaviour. Fig. 1 shows the composite components distribution 
corresponding to all these situations. 
 

Parallel distribution Serial distribution S/P distribution  
Fig. 1   Distribution of components in a composite material 

 
The serial/parallel rule of mixtures, developed by Rastellini [7], considers that in a certain direction 

the compounding materials behave in parallel, while their behaviour is in serial in the remaining 
directions. In the case of fibre reinforced polymers, the parallel direction corresponds to the fibre 
direction. The numerical model is based on the following hypotheses:  
1. The component materials have the same strain in parallel (fibre) direction 
2. The component materials have the same stress in serial direction 
3. The composite response is in direct relation with the volume fractions of component materials 
4. A homogeneous distribution of phases is considered in the composite 
5. A perfect bounding between components is also considered 

With these hypotheses, the implemented algorithm employs the split of serial and parallel parts of 
the stress and strain tensors. Thus,  

 
: ; : ;P P S S P SP Pε ε ε ε ε ε ε= = = +  (1)

: ; : ;P P S S P SP Pσ σ σ σ σ σ σ= = = +  (2)
 

being PP  and SP  the parallel and serial projector tensors (respectively). The equations that establish 
the strain compatibility between components arise from the analysis of the hypotheses previously 
exposed. Defining the superscript , ,i c m f=  as composite, matrix and fibre respectively, and ik  as 
the volumetric participation in the composite of each component, the compatibility equations can be 
written as: 

 
 Parallel behaviour:  c m f

P P Pε ε ε= =  

  c m m f f
P P Pk kσ σ σ= ⋅ + ⋅  

(3)

 Serial behaviour:  c m m f f
S S Sk kε ε ε= ⋅ + ⋅  

  c m f
S S Sσ σ σ= =  

(4)

 
The first operation performed by the algorithm implemented in PLCd code is to split the strain 

tensor into its parallel and its serial parts, in order to compute the strain state in matrix and fibre 
materials. The parallel strain component is, according to equation (3), the same for both materials and 
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for the composite. On the other hand, the serial strain component requires a first prediction of the 
strains expected in one of the composite components. This prediction is done in matrix material. Once 
the strain state is known, the stress tensor of matrix and fibre materials is computed using their own 
constitutive law: 

 
: ( )
: ( )

m m m m p

f f f f p

σ ε ε

σ ε ε

= −

= −

C
C

 (5)

 
where iC  is the constitutive tensor of fibre and matrix and i pε  the plastic strain tensor. The two 
stress tensors computed with equation (5) must fulfil the equilibrium equations. This means that the 
matrix serial stresses must be equal to the fibre serial stresses (equation(6). A Newton Raphson 
scheme is applied to reduce the stress residue and to correct the initial prediction of matrix serial 
strains until equation (6) is verified.  

 

[ ] toler
k kk m f

S S Sσ σ σΔ = − ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (6)

 
2.2 Simulation of FRP reinforcements using the code 

In this section, a numerical simulation of a bending reinforced beam is presented. This case shows 
the efficiency of the serial/parallel rule of mixtures to deal with this sort of structural problems, as it is 
able to reproduce the complex mechanical behaviour found in the beam with an acceptable 
computational cost. The numerical results are validated with experimental values. The studied beam is 
defined in the paper by Spadea et al. [10]. Its geometry and the reinforcements applied to it are shown 
in Fig. 2 

 
Fig. 2   Geometry and reinforcement of the beam studied 

 
The red (thick) line displayed in the bottom of the beam corresponds to the FRP reinforcement. 

This is made of carbon fibres embedded in a polymeric matrix. The content of fibres is 60% and the 
composite thickness is 1.2 mm. The finite element model developed to simulate the beam 
reinforcement is shown in Fig. 3. This is a 3D finite element made with linear hexahedrons.  

 
MAT-01: Concrete 100% 
MAT-02: Concrete (57%) 
 Longitudinal Steel (42%) 
 Vertical Steel (1%) 
MAT-03: Concrete (99%) 
 Vertical Steel (1%) 
MAT-04: Concrete (98%) 
 Vertical Steel (1%) 
 Horizontal Steel (1%) 
MAT-05: Concrete (99%) 
 Horizontal Steel (1%) 
MAT-06: Polymeric Matrix (34%) 
 Long. Carbon Fibres (66%) 

Fig. 3   Finite element model developed to realize the numerical simulation 
 
The usage of the S/P rule of mixtures allows considering all the reinforcement details found in the 

beam using a coarse mesh. In Fig. 3 it is also included the composite materials composition. As can 
be seen, a single finite element contains, in this particular case, up to three different component 
materials. The steel reinforcements are considered as fibres, whose orientation is defined by the bar 
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direction. The FRP reinforcement has been included adding new finite elements to reproduce with 
more accuracy its position in the beam.   

The results obtained with this simulation are compared with the experimental results reported by 
Spadea et al. [10]. Fig. 4 shows the vertical displacement of the beam, in the point where the force is 
applied, against the load value. This figure demonstrates the agreement between numerical and 
experimental results, which proves the ability of the method to perform this sort of simulations. Fig. 4 
also includes the results obtained with a numerical simulation of the same beam without FRP 
reinforcements. The comparison between the results obtained for the reinforced and for the non-
reinforced beam shows the improvement obtained in the beam performance when it is reinforced with 
FRP.  
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Fig. 4   Force-displacement graph comparing the experimental and the numerical results 

 
One of the main advantages of the proposed finite element formulation is that it allows obtaining 

the structural behaviour of all its components, their failure causes, their strain-stress state, etc. In Fig. 
5 some results maps, corresponding to the final computed step, are represented. These show the 
most relevant information obtained from the numerical simulation. Fig. 5a displays the plastic damage 
in concrete, which shows that the failure cause of the beam are the tensile stresses in concrete at 
midspan. In Fig. 5b and Fig. 5c it is depicted the plastic damage obtained for the longitudinal steel 
reinforcement and for the polymeric matrix, respectively. These two figures show that both materials 
have reached their yield stress when the beam failure occurs. Finally, Fig. 5d shows the stresses in 
carbon fibres. As it can be seen, they are at less than a half of their load capacity (the fibre elastic limit 
stress defined is: 2300eσ = MPa) 

 
 

 
Fig. 5a   Plastic damage in concrete 

 

 
Fig. 5b   Plastic damage longitudinal steel reinf. 

 

 
Fig. 5c   Plastic damage in polymeric matrix 

 

 
Fig. 5d   Longitudinal stresses in carbon fibres [kp/cm2] 

Fig. 5   Results maps obtained with the finite element model of the beam 
 

3 MICRO-FORMULATION TO OBTAIN COMPRESSION STRENGTH OF COMPOSITES 
 
3.1 Approach used in solving the fibre buckling problem 

In all existing bibliography, the fibre buckling problem is solved by using different methodologies to 
obtain a general expression for the composite limit compression stress. This expression is only valid 
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for the composite material and is obtained taking into account different characteristics of the 
composite components. Alternatively, in the present work, the composite material will be modelled 
using the S/P rule of mixtures. Thus, the fibre buckling problem must be solved in terms of the 
composite components, considering their interaction, and not in terms of the composite by itself.  

The interaction between fibres and matrix appears when the composite is compressed: matrix 
restrain fibres avoiding their transversal movement. Under this approach, matrix can be considered as 
an elastic restriction of fibres, and the fibre-matrix system can be represented as it is shown in Fig. 6. 
In this figure the movement of the fibres in case of compression has been represented in dashed lines. 
Fibre behaviour is analogous to the response that is obtained in a curved bar under unilateral restrain. 
This analogy is used to formulate the fibre buckling problem.  

 

 
Fig. 6   Fibre-matrix system. Fibre behaviour when the composite is compressed 

 
According to Fig. 6, the fibre stiffness is reduced due to its original misalignment: for a fixed value 

of P, fibre longitudinal strain is increased due to its structural deformation. The deformation suffered by 
fibres is directly related to matrix elastic modulus, which is reduced when damage evolves in matrix 
material. As matrix damage increases, fibre restrain becomes lower and its stiffness decreases. 
Hence, the problem will be solved introducing a varying elastic modulus in fibres, dependent on the 
matrix damage internal variable and on the fibre initial misalignments. Fibre buckling will occur when 
matrix cannot restrain fibres anymore. Proceeding in this way, the parameters defined in literature in 
which the problem depends (matrix shear strength, fibre misalignments and proportion between fibre 
and matrix) are considered in the resolution process. The first two parameters are included in the 
calculation of fibre modified elastic modulus and the last parameter is included in the rule of mixtures, 
as composite behaviour depends on the volumetric participation of its components.  

 
3.2 Equations of a curved bar under unilateral restriction 

The equations that define the behaviour of a curved bar under unilateral restriction were 
developed by Hetény in [11]. Considering the curved bar displayed in Fig. 7a, the equations that 
define its behaviour are obtained studying the equilibrium of forces of an infinitesimal section (Fig. 7b). 
The elastic restriction of the beam is considered as a radial load ( q ) dependent on fibre radial 
displacement (ω ) and the matrix elastic modulus ( k ). 

 

 
Fig. 7a   Curved bar geometry 

 
Fig. 7b   Forces acting on an infinitesimal section 

Fig. 7   Curved bar under unilateral restriction problem 
 
The equilibrium of forces displayed in Fig. 7b defines the following equations: 
 

dMdRQ
dNdQ

dQdNdsq

=
=

=−

φ
φ

φ
 (7)

 
Neglecting the axial deformation of the bar due to the normal force N , the differential bending 

equation of a circular arch of radius of curvature R  and flexural rigidity EI  is: 
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d
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Rearranging equations (7) and (8), the bar displacement in its radial directions defined by the 

differential equation:  
 

02 2
3

3
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5

=++
φ
ωη

φ
ω

φ
ω

d
d

d
d

d
d

 (9)

 

where 1
4

+=
EI

kRη  

 
The general solution of equation (9) is:  
 

[ ]
[ ] )sin()sinh()cosh(

)cos()sinh()cosh(

21413

212110

φηφηφη
φηφηφηω

CC
CCC

++
++=

 (10)

 

with 
2

1
1

−
=

ηη  and 
2

1
2

+
=

ηη  

To obtain the particular solution for the curved bar problem, some boundary conditions must be 
imposed. Defining the axis of symmetry as the origin of angle φ , two boundary conditions can be 

defined (11). These two conditions force the integration constants 2C  and 3C  to be zero. The rest of 
boundary conditions are obtained according to the fibres structural model. This is depicted in Fig. 8 
and the boundary conditions to be applied are described in figure Fig. 9.  

 

0)0(0
0

===
=

φ
φ
ω

φ

Q
d
d

 (11)

 

 
Fig. 8   Fibres structural model 

 

 

1st B.C. 0)( == αφM  
2nd B.C. PQN ==−= ααφααφ sin)(cos)(  
3rd B.C. 0)( == αφv  
being v  the vertical displacement of the bar.  

Fig. 9   Boundary conditions to apply to fibre structural model 
 

3.3 Fibre modified elastic modulus due to fibre buckling 
The equations shown in previous section allow obtaining the structural displacement of fibres due 

to its original misalignment. This displacement does not take into account the displacement produced 
by longitudinal strains due to the compression force applied to the structure. As the objective sought is 
to use this displacement to modify fibres elastic modulus, it has to be transformed into strains. This 
can be done dividing the displacement obtained by the bar length.  
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α
ε

sinR
u

l
ucb ==  (12)

 
where u  is the horizontal bar displacement, for αφ = , obtained when solving the curved bar under 
unilateral restrain problem. Structural strains due to fibre misalignments must be added to the normal 
strains due to the compression force applied to the fibres ( Pε ). Thus, the total longitudinal strain that 
will be found in fibre material is:  

 

α
εεε

sinR
u

AE
PcbP +=+=  (13)

 
being A  fibre area, E  its elastic modulus and P  the horizontal force applied to solve the curved bar 
problem. To obtain the total strain straightforward, the elastic modulus of fibres is replaced by the fibre 
modified elastic modulus, which is obtained as: 

 

αsin
ˆ

RuAEP
APE

+
=  (14)

 
Equation (14) shows that the fibre modified elastic modulus varies in function of the fibre initial 

misalignments and in function of the matrix stiffness, as the value of u  depends on these two 
parameters. Ê  will remain constant while matrix is under elastic conditions and, as soon as damage 
in matrix starts, its elastic modulus will vary and so will do Ê . 

 
3.4 Numerical implementation of fibre modified elastic modulus 

Fibre modified elastic modulus is computed in two different places of the finite element code. The 
first one is at the beginning of the code, where the modified elastic modulus replaces the fibres original 
one. In this way, the behaviour of fibres due to their original misalignment can be taken into account 
along the whole calculation process. The second place where the fibre elastic modulus is computed is 
into the rule of mixtures algorithm. After obtaining the matrix stress tensor, it is possible to know if the 
matrix material has reached its elastic limit stress and if damage has occurred. In this case, fibres 
elastic restrain is modified and a new modified elastic modulus must be obtained. Proceeding in this 
way, fibres are always computed according to the matrix state. The algorithm of this numerical 
implementation is displayed in Fig. 10. 

 
Fig. 10   Numerical implementation of modified elastic modulus in the S/P rule of mixtures algorithm 
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4 VALIDATION OF COMPUTATIONAL METHOD 
 

The validation of the computational method has been done comparing the compression load 
obtained with the new formulation developed in this paper with the experimental results described in 
the paper of Barbero and Tomblin [3] in which twelve different composites have been tested to obtain 
their compression strength. The different composites are made of glass fibres in a polymeric matrix 
and each one is characterized by the kind of fibres and polymer used and the fibre volume content. 
Fibre misalignment has been measured for each sample. The validation has been realized using three 
of these samples which characteristics are exposed in Table 1. The mechanical characteristics 
considered for each component material are described in Table 2. 

 
Table 1  Materials composing the samples modelled. 

 

Sample Matrix material Fibre material Fibre volume 
fraction 

Misalignment 
expected angle 

CAA Polyester  
2036C  

Glass-fibre  
OC 102-AA-56 40 % 2.76º 

CBB Vinyl Ester  
D-1419  

Glass-fibre  
OC 366-AD-113 43 % 2.87º 

ACA Polyester  
2036C  

Glass-fibre  
OC 102-AA-56 55 % 2.63º 

 
Table 2  Mechanical properties of the materials composing the samples. 

 

Material Limit strength 
[MPa] 

Elastic modulus 
[GPa] 

Poisson  
modulus 

Fracture 
energy [m·Pa] 

Glass fibre 1800 75,0 0,20 1000 

Polyester matrix 35 3,0 0,35 15 

Vinyl ester matrix 40 3,5 0,35 18 
 

Glass fibre OC 102-AA-56 has a diameter of 13 μm and OC 366-AD-113 has a diameter of 23 μm.  
The misalignment expected corresponds to the half normal distribution of all the angle misalignments 
measured for each sample. To obtain the shape of fibre misalignments from this angle, the result 
obtained by Jochum and Grandidier [6] are used. These say that the amplitude found in the fibre 
misalignments corresponds to 1 to 2 times the fibre diameter. Thus, an amplitude of 15 and 25 μm will 
be considered respectively for the two kind of fibres described. Using the misalignment expected 
angle, according to Fig. 11, the amplitude and wave-length for each sample is 
 

Amplitude

Wavelength
Misalignment Angle

 
Fig. 11   Geometry of fibre misalignments considered 

 
CAA:  Amplitude: 15 μm  Wavelength: 1244 μm 
CBB:  Amplitude: 25 μm  Wavelength: 1994 μm 
CAA:  Amplitude: 15 μm  Wavelength: 1306 μm 
The experimental fibre buckling compression stress found by Barbero and Tomblin [3] for each 

one of these composites is shown in Table 3. 
 
Table 3  Fibre buckling experimental compression stress found in each composite sample. 

 

 CAA CBB ACA 

Limit Compression Stress 477.74 MPa 521.56 MPa 560.90 MPa 
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Three different numerical simulations have been developed, each one corresponding to one of the 
samples previously defined. All of them have been computed with the finite element model shown in 
Fig. 12, modifying their material definition according to the composites defined by Barbero and 
Tomblin. 
 

450

200

 
Fig. 12   Models Developer to validate the code. The dimensions are in μm 

 
The results obtained with each model are displayed in Fig. 13, where the force applied to the finite 

element structure is plotted against the displacement in the face where the load is applied. In this 
figure the forces that would be required in the structure, for the maximum compression stress obtained 
with the experimental simulation, have been also included. The relative error obtained in each 
numerical model shows the good performance of the formulation proposed.  
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Fig. 13   Comparison among experimental and numerical results 

 
The different compression strength values obtained for each composite show the dependence of 

the formulation on the value of fibre initial misalignments, on matrix characteristics and on the 
volumetric participation of fibres and matrix in the composite, as these parameters differentiate the 
three composites considered in the numerical simulation.  

The composite capacity due to fibre misalignments is compared with the maximum compression 
that can be applied to it if no misalignments are considered (Fig. 14). As it can be seen, fibre 
misalignments reduce compression capacity in more than a 30% in the case considered. If fibre 
strength is larger, i.e. when carbon fibres are used, this reduction will be also larger. 
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Fig. 14   Compression strength with aligned and 

unaligned fibres 
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Fig. 15   Composite components behaviour. 

Stress-strain diagram 
 

Relative error obtained 
in each sample: 
 

CAA:  5.1% 
CBB:  1.1% 
ACA:  3.1% 
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The strength reduction shown in Fig. 14 is explained comparing the composite components 
behaviour obtained with both models. Fig. 15 shows the longitudinal stress-strain diagram for fibre and 
matrix. Matrix stresses have been scaled by 10 to see better in the graph their evolution. When no 
misalignment is considered, matrix and fibre stress evolution are independent. On the other hand, 
when the misalignment effect is included in the simulation, fibre behaviour is conditioned by matrix 
stress evolution. When matrix reaches its limit stress, fibre stiffness decreases as matrix capacity to 
restrain fibres from increasing their initial misalignment is reduced due to damage. Fibre stiffness 
reduction increases as damage in matrix evolves and, when matrix cannot restrain fibres any more, 
the composite reaches its compression limit strength due to fibre buckling. Thus, fibre stress evolution 
has a strong dependence on matrix behaviour when it has reached its limit stress.  
 
5 CONCLUSIONS 
 

It has been demonstrated that the S/P rule of mixtures is an appropriate numerical tool to simulate 
FRP reinforcements of concrete structures, this paper presents a new formulation (to be included in 
the rule of mixtures algorithm) which takes into account the micro-structural behaviour of fibre 
reinforced composites to obtain their compression strength. The formulation considers fibre initial 
misalignments and its evolution along the loading process to obtain the behaviour of fibre and matrix 
material. The mechanical performance of each one of these components is used to compute the 
composite behaviour using the serial/parallel rule of mixtures. 

Three different simulations, corresponding to different composites, have been performed and the 
compression strength obtained for each one has been compared with experimental results. This 
comparison has proved the good performance of the proposed formulation, and its dependence on the 
composite components characteristics. These simulations have also proven that the new formulation 
is able to obtain the post-critical evolution of the composite material once fibre buckling has occurred.  
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